билайн Big Data & AI — команда билайна, занимающаяся большими данными и искусственным интеллектом и учёные Сеченовского университета Минздрава России разработали ИИ-модель для автоматической детекции и классификации клеток рака почки в гистологических исследованиях. Планируется, что решение будет представлено на рынке совместным предприятием партнеров — ООО “МедТех ИИ”. Решение может использоваться специалистами как сервис “второго мнения”, что снимет часть рутинных задач с врачей-патологоанатомов и предлагает современный подход к выбору эффективной терапевтической стратегии.
Почечно-клеточный рак составляет 3,8% от всех онкологических заболеваний, ежегодно в мире заболевают 250 тыс. человек и умирает около 100 тыс. человек. Операция — один из основных способов лечения рака почек, но на этом терапия не заканчивается. Дальнейшая стратегия лечения, риск рецидива и прогноз в целом зависят от характера опухоли и степени ее злокачественности. Ее определяет врач-патологоанатом, изучая срезы опухоли под микроскопом.
Команда ученых, врачей-патологоанатомов и дата-сайентистов больше года вели разработку ИИ-модели на базе компьютерного зрения для автоматической детекции и классификации клеток рака почки в гистологических исследованиях. Разработанная программа представляет собой многоклассовый детектор опухолевых клеток с определением ядрышковой градации каждой отдельной клетки с помощью искусственного интеллекта, результат детекции может использоваться медиками при назначении терапии и плана лечения. Для обучения модели специалистами было размечено и проноаннотировано около 200 000 отдельных опухолевых клеток.
Существует четыре степени злокачественности опухоли почки, они определяются по видимости ядрышка (уплотнения внутри ядра) и наличию опухолевых клеток разных типов. Поиск и классификация ядер клеток занимает много времени врача-патологоанатома. Несмотря на наличие конкретных классификаций (Фурман и ВОЗ) и признаков, присутствует определенная доля субъективизма в оценках — даже посмотрев друг за другом в микроскоп с разницей в минуту, два врача могут дать клеткам разные оценки. А от правильной постановки степени злокачественности зависит эффективность всего последующего лечения.
Нейросеть позволяет использовать дополнительные данные для оценки и более точной классификации опухоли. Например, она осуществляет подсчет потенциально злокачественных клеток, что повышает объективность результатов. Сейчас достигнут уровень детекции прогностически значимых опухолевых клеток и их классификации с метриками точности превышающими 90%.
Алексей Файзуллин, к.м.н, заведующий Лабораторией цифрового микроскопического анализа Института регенеративной медицины НТПБ Сеченовского Университета:
“Созданное решение позволяет пересмотреть существующие классификации рака почки, позволяя учитывать более широкий спектр морфологических особенностей. С помощью подробного морфологического и статистического анализа мы выявили четыре различных паттерна, основанных на соотношении плотности клеток с ядрышками и без. Эта система классификации, основанная на клеточном составе, перспективна для применения в персонализированной медицине и открывает новые возможности для анализа опухолей с помощью искусственного интеллекта.”
Команда рассчитывает, что модель станет полезным инструментом не только для опытных врачей-патологоанатомов, сокращая время проведения анализа, но и для молодых специалистов, которые только получают опыт в клинической диагностике. В ближайшее время планируется проведение клинических испытаний модели.
Константин Романов, директор по искусственному интеллекту и цифровым продуктам билайна, генеральный директор ООО “МедТех ИИ”:
“Разработка и внедрение решений на базе искусственного интеллекта — это следующий этап успешной цифровизации здравоохранения. Вместе с коллегами из Сеченовского университета мы стремимся упростить работу врачей и создать полезные и удобные инструменты для решения их ежедневных задач. Искусственный интеллект не заменит врача, но он способен помочь эффективно и своевременно решать сложные медицинские задачи и отвечает реальным потребностям пациентов и системы здравоохранения”.
Его обвиняют в получении взяток на общую сумму более 69 миллионов рублей
Компания балансирует на этой грани уже несколько месяцев
Вымостки два года были недоступны для горожан
При этом сумма займа на покупку автомобиля выросла
Истцом выступает московская компания «Энергосила»
Следователи проводят проверку условий проживания девушки в семье