Исследователи Института физики полупроводников им. А.В. Ржанова СО РАН создали новый материал для мемристоров (резисторов, обладающих памятью): композит из наночастиц оксида ванадия покрытых фторированным графеном, сообщили в пресс-службе Института.
Отмечается, что разработанные структуры могут использоваться для изготовления элементов памяти гибкой электроники: они выдерживают многочисленные деформации, способны хранить и многократно перезаписывать информацию всего за 30 наносекунд.
— Перед нами стояла задача создать мемристорный материал для гибкой электроники, для этих целей хорошо подходит фторированный графен: он сохраняет стабильность при многократных переключениях, устойчив к изменениям температуры, механическим воздействиям. Однако, его недостатком является небольшая (1-2 порядка) разница токов для открытого и закрытого состояния мемристора. Чтобы решить проблему мы добавляли к фторированному графену материалы, позволяющие увеличить резистивный эффект. Лучший результат показали композитные пленки, состоящие из фторированного графена и наночастиц оксида ванадия — разница между токами в открытом и закрытом состояниях, достигала девяти порядков, говорит Артем Иванов, младший научный сотрудник лаборатории Физики и технологии трехмерных наноструктур ИФП СО РАН, возглавляемой доктором физико-математических наук профессором Виктором Яковлевичем Принцем.
По его словам, если сравнивать с мировой практикой, аналогичные величины наблюдают при использовании полимеров или оксида графена, но первые нестабильны, легко деградируют, а второй позволяет переключать мемристор лишь сотни раз.
Отмечается, что большая разница токов в открытом и закрытом состояниях, позволяет создать систему из нескольких тысяч мемристоров. Это, с одной стороны, увеличивает емкость памяти, а с другой — дает возможность создавать нейроморфные сети, по принципу работы схожие с человеческим мозгом.
Мемристоры из нового композитного материала печатают на 2D принтере: готовятся специальные чернила и машина наносит их на полимерный материал. Напечатанные структуры можно сгибать практически вдвое — проводящие компоненты не пострадают и продолжат переключаться.
— В нашей лаборатории разработана надежная, удобная и воспроизводимая технология получения фторированного графена, которой больше нет нигде в мире. 2D печать, в свою очередь, не требует дорогостоящего оборудования, больших финансовых вложений. Конечно, персональный компьютер напечатать невозможно, но, например, телефоны сейчас стремятся сделать гибкими, как и другие гаджеты: фитнес-браслеты, носимые сенсорные системы для мониторинга состояния здоровья и так далее, — комментирует ведущий научный сотрудник лаборатории физики и технологии трехмерных наноструктур ИФП СО РАН доктор физико-математических наук Ирина Антонова.
Переключать мемристоры, созданные новосибирскими физиками из открытого (Ion) в закрытое (Ioff) состояние, попросту говоря перезаписать информацию, можно до миллионов раз в зависимости от параметров структур. По мировым стандартам — это в сочетании с разницей между токами (Ion/Ioff) в 6—9 порядков и наносекундными временами переключения — рекордные параметры для гибкой электроники.
В дальнейшем исследователи планируют протестировать способность отдельных наночастиц композита выступать в качестве мемристоров, чтобы достичь предельной плотности компонентов.
Фото предоставлено пресс-службой Института физики полупроводников им. А.В. Ржанова СО РАН
Эксперт объяснила, кому можно есть «экзотику», а кому она противопоказана
В продовольственном сегменте в лидерах роста масло и морепродукты
На днях суд отказался банкротить другую компанию застройщика
Вместо точного времени новосибирцы увидели на экране фильм про попугаев
Фактически было приобретено на 44 квартиры больше
Аферисты продолжают «обкатывать» на доверчивых людях новые схемы